Test-Driven Simulation of Robots Controlled by Enzymatic
Numerical P Systems Models

Radu Traian Bobe![0009-0005-6611-3176] \[arian Gheorghe?[0000—0002-2409-4959] ' Rorentin
b b
Ipatel[0000—0001—8777—3425]’ and Tonut Mihai Niculescy L [0000—0002—6135-9135]

! Department of Computer Science, Faculty of Mathematics and Computer Science University of Bucharest, Str
Academiei 14, Bucharest, 010014, Romania
radu.bobe@s.unibuc.ro, florentin.ipate@unibuc.ro, ionutmihainiculescu@gmail.com
https://www.ifsoft.ro/~florentin.ipate/ https:\ionutmihainiculescu.ro
2 Faculty of Engineering and Informatics, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United
Kingdom
m.gheorghe@bradford.ac.uk
https://www.bradford.ac.uk/staff/mgheorghe

Abstract. The simulation of robots behavior and the use of robust models are very important for
building controllers. Testing is an important aspect in this process. In this paper, a test-driven approach
for designing robot controllers based on enzymatic numerical P systems models is introduced. Four such
models are defined and tested using three distinct scenarios. The paper reveals an effective way of using
modelling, simulation and testing in a coherent way.

Keywords: Membrane computing - Numerical P systems - Enzymatic numerical P systems - Robot
controllers - Simulation - Search-based software testing.

1 Introduction

Membrane computing is a branch of a more general research area, called natural computing. Natural comput-
ing investigates computational models inspired by phenomena and processes occurring in nature. Membrane
computing, introduced by Gh. Paun [13], is a biological-inspired computational paradigm, investigating mod-
els that abstract out from the structure and functionality of the living cells. The field evolved rapidly in its
first decade, focusing on theoretical developments of several classes of membrane systems (or P systems),
various applications in computer science, graphics, economics and biology, as well as on relationships with
other classes of computational models. A handbook reporting the key developments in membrane computing
at the end of the first decade of research in the field has been published [15]. The main classes of membrane
systems (P systems), cell-like, tissue-like and neural-like P systems, reflect the structure of living cell, tissue
and brain, respectively. Real-life applications of membrane computing in various areas have been investigated
in [24].

A new class of membrane systems, namely numerical P systems, has been introduced, with the aim of
modelling economics phenomena, in a nature-inspired computational setting [14]. Later on an extension of
this model has been considered, enzymatic numerical P system, which looks appropriate for modelling robot
controllers [11]. Some robot controllers have been designed based on enzymatic numerical P systems [22,12].
A simulator, called Pep [17], for running enzymatic numerical P systems has been provided and utilized in
various controllers [22,12,3].

Software applications tend to have a considerable role in solving problems in various aspects of the life.
Given the importance of these applications, it is important to ensure the product quality and functionality
and this is mostly addressed through software testing. This becomes an important part of the software
development life-cycle, aiming to validate that the requirements of the software product are fulfilled, by
identifying undesired behavior. A largely used testing approach is search-based testing [8]. A relatively new
tool for search-based testing, especially for autonomous systems, is AmbieGen [6].

In this paper, we propose an approach for building simulators for a robot controller designed to handle
enzymatic numerical P system models. Four models are built using the formalism provided in [11]. The
development process of designing the models is driven by a number of scenarios, one of these, the most
complex, uses the testing tool AmbieGen for generating use cases and for testing the model-based systems.In
some sense, our approach is similar to “test-driven development”[5], improvements being added only after
studying the performance of the models during the previous tests. The behavior of the controller and the

https://www.ifsoft.ro/~florentin.ipate/
https:\ionutmihainiculescu.ro
https://www.bradford.ac.uk/staff/mgheorghe

2 Radu Traian Bobe, Marian Gheorghe, Florentin Ipate and Ionut Mihai Niculescu

enzymatic numerical P system models designed for an E-puck educational robot [10], is visualized with
Webots, a robot simulation tool.

The paper is structured as follows: Section 2 presents the definition of the enzymatic numerical P system
model used in the paper. Section 3 introduces the working environment, including the tools used. Section
4 describes the four enzymatic numerical P system models, while Section 5 illustrates the testing approach
along with the results for three scenarios. Finally, Section 6 presents the conclusions and future work.

2 Enzymatic Numerical P System Definition

The enzymatic numerical P systems are special classes of membrane systems, that share with the rest of the
models only the membrane structure, in the form of a tree. The compartments contain variables instead of
objects and their values are processed by programs replacing the rewriting and communication rules [11].
As in any membrane system, the compartments are delimited by membranes. Subsequently, we use them
interchangeably. A global clock controls the systems through discrete time units.

The enzymatic numerical P system (EN P system) is defined by the tuple:

I =(m,H,u,(Vary, Pr;, Var,(0)), ..., (Vary,, Pry, Var,(0))) (1)

where:

m > 1 is degree of the system IT (the number of membranes);

— H is an alphabet of labels;

— p is membrane structure (a tree);

Var; is a set of variables from membrane i, 1 < i < m;

Var;(0) is the initial values of the variables from region 4, 1 < i < m;
— Pr; is the set of programs from membrane ¢, I < i < m.

The program Pry, ;, 1 < I; < m; has one of the following forms:
i) non-enzymatic

Fli(m1 655 @06) = crlve + coilve + -+ cmy il Vm,
where Fy, ;(z1,i,...,2x,) is the production function, c; ;|v; + c2,i|vg + -+ - + Cm,,i|Um, is the reparti-
tion protocol, and z; ;, ..., 7, ; are variables from Var;. Variables vq, v2 . . . vy, belong to the compart-

ment where the programs are located, and to its upper and inner compartments, for a particular com-
partment 4. If a compartment contains more than one program, only one will be non-deterministically
chosen.

ii) enzymatic

e = C1ilvi tegilve o+ o

Fii(®g 4,00 25) U,

where e; is an enzymatic variable from Vary, ¢; ¢ {®14y..., %k i, V1, .., U, }. The program can be
applied at time ¢ only if e; > min(z; ;(t),...,zx,:(¢)). The programs that meet this condition in a
compartment will be applied in parallel.

When the program is applied by the system at time ¢ > 0, the computed value

_ Fri(wgi(t), - a4(t))

,i(t) ™
> ci
j=1
representing the wunitary portion that will be distributed to the variables vy,..., v,, proportional to
coefficients ¢; 4, ..., ¢m, i, where ¢; ; € N and the received values will be g, ;(t) - ¢1iy. ., @i () * Cmyi-

The value of each of the variables from ¢ — 1, occurring in the production functions is consumed, reset to
zero, and its new value is the sum of the proportions distributed to variable through the repartition protocols,
if it appears in them or remain at value zero.

Test-Driven Simulation of Robots Controlled by Enzymatic Numerical P Systems Models 3

3 Research Environment and Tools

The research environment allowing to implement our simulation approach consists of several tools that serve
the purpose of this investigation.

EN P system models are simulated with a tool called Pep [17] allowing to define them in domain specific
language and then execute the systems in accordance with the semantics of the models.This tool allows us
to implement the robot controller environment and execute it.

The controller is meant to equip an E-puck robot [10]. Important for our study is the fact that the robot
has two motors attached to the body along with two wheels; the speed value is changeable and handled by
the controller. It also includes eight infrared proximity sensors placed around the body and a GPS attached
to the turret slot in order to assess the coordinates at each step and use them for the simulation. For the
purpose of our investigation a simulator is used instead of the E-puck robot. In this case, Webots, a robot
simulation tool is used, allowing to construct complex environments [9]. A special mechanism, called PROTO
[16], allows to build special objects within the environment.

A third tool utilized in this investigation is AmbieGen, an open-source tool relying on evolutionary search
methods for the generation of test scenarios [6,7]. The software is written in Python and uses evolutionary
search [23] and multi-objective algorithms for search-based test generation [2].

We now briefly described how these tools are integrated.

PeP simulator containing EN P system model is integrated with E-puck controller.

The pseudocode version of the main loop in our controller, taken from [1], appears below.

Algorithm 1 Simulation steps performing algorithm

1: repeat
2: for i=1 to number_of_sensors do
sensor_membrane(i) < value(7)

3

4 run one simulation step

5: read lw, Tw from P system

6: leftMotor +— lw

7 rightMotor < rw

8: until the end of the road or E-puck goes out of the road

AmbieGen provides the test generation scenarios with roads, as .json files, plus test outcome, maximum
curvature coefficient etc.

In the Webots graphic interface, the simulation can be visualized on inputs provided by AmbieGen. More
details about the tools and the way they work together are available from [1].

Remark 1. All the models used in this experiment and test scenarios along with the results are available in
our GitHub project. [18].

4 Enzymatic Numerical P System Models

In this section we will present our models used to control the robot. The controller receives data from
proximity sensors, that measure distances to obstacles from the environment, to determine the direction of
movement of a differential two wheeled robot, E-puck, in our case.

The proximity sensor has a range of 4 cm; if the obstacles are further than this limit the sensor returns
the value of 0. The proximity sensors are placed on the left and right side of the robot in the direction of its
movement at different angles.

The basic model was taken from [3] and adapted to make a rotation move when an obstacle is near, in
order to avoid it and continue the movement. The equations that calculate the linear and angular velocity
are shown below:

4 Radu Traian Bobe, Marian Gheorghe, Florentin Ipate and Ionut Mihai Niculescu

leftSpeed =cruiseSpeed + Z weightLeft; - proz; (1)
i=1

rightSpeed =cruiseSpeed + Z weightRight; - prox; (2)
i=1

The leftSpeed and rightSpeed are the speeds of the two wheels of the robot, whilst n is the number of
sensors. Each sensor has constant weight values, empirically chosen to conduct the robot to the desired be-
havior.

This basic model encountered considerable difficulties to pass the road tests generated by AmbieGen, being
capable to move without hitting the margins just on straight roads or very little curved roads. The model was
formally described and more experiments have been done in our previous work [1], where it is referred as 1y, .

Considering the limitations of IT, , the model we present next is an improvement on the first one.

4.1 Basic Model with Rotation

Analyzing the initial model, we observed that the speed of the wheel on the side with an obstacle increased
reported to weights. Thereby, this caused a sort of rotation in the opposite direction of the obstacle but not
sufficient to pass the test.

The main change of our model was to introduce the compartment w, calculating the product of the travel
speed and the sum of the weights. In this way, after rotating in the opposite direction when detecting an
obstacle, the robot will continue the test, moving forward with a constant velocity.

This is certainly an improvement, especially when the robot is challenged on roads, but as presented next,
there were still some issues that aimed us to introduce another model.

Let us consider the following function:

f(x){l, if 2 =0 @)

0, otherwise

This function will be used in the equations describing the behavior of the model and in the production
functions from the programs.

The equations describing the behavior are:

n

weightLeft = Z weightLeft; - prox; (4)
i=1

weightRight = Z weightRight; - prox; (5)
i=1

leftSpeed =cruiseSpeed - weightLeft + f(weightLeft) - cruiseSpeed (6)

rightSpeed =cruiseSpeed - weightRight + f(weightRight) - cruiseSpeed (7)

The model is defined as follows:
Iy, = (m, H,u, (Vary, Pry, Var; (0)), ..., (Vary, Pry, Var,(0))) (8)
where:
— m:3k+3,k=6k;
- H={s,w,s.}U U{ci,si,wi};

i=1

= o= s Dwiler - s lund e DscJwlss

Test-Driven Simulation of Robots Controlled by Enzymatic Numerical P Systems Models 5

— Vars = {5, 25, }, Vary = {Zw,, 2w, v}, Vars, = {5, },
I/a/rcz = {Ic,,s“ T, 509 Lej,wyy Leg,wy s eci}a 1 S 1 S k7
Vars, = {xs, i}, 1 <1 <k,

Vary, = {Zw; wys Tw;ws €w; b5 1 < 1 < k;
— Vary(0)=10,1 <1< m;
— Pro={0" 1z, x5, — 1]z5, + 1|5, };
Pry = {zs, - 2w, + [(@w,) - Ts,le, = 1]Tw),
Ts, * T, + f(xwr) * Ts, | ey — 1 |Iwr};
Prs, ={z5, = 1|5, };
P'rcz = {xcz,sl * Lej,w e, — 1|xs“
mchs,» : xc,,w, €c; — 1|$s,,.}7 1 S 1 S k7
Pry, = {8%s, i — 1|xs, s+ 1]2c;, 5 + 1|Tc, s, }, 1 <1 < k;
Pry, = {251311),,1111|ewz — 1 |Iw7,,w1 + 1 ‘Ic,,wza
2T, w, e, = 1 |Twiw, + 1T, w3, 1 <0 < k;

The meaning of the variables from the model is the following:

o z, and z,, from the region s represent leftSpeed and rightSpeed, the sum of the products are accumulated
ins;

o x,, from the compartment s. is cruiseSpeed;

o each pair of weights, weightLeft; and weightRight;, resides in the regions w;, 1 < i < k;

o for each proximity sensor, proz;, a compartment is defined, namely s;, containing a single variable, =, ;,
1 <i<k;

o the products are calculated by two distinct programs, weightLeft; - prox;, and weightRight; - prox;, 1 < i < k,

in the compartments c¢;.

4.2 Refined Model

During the test phase of the above presented model, we observed that even though the robot avoids the ob-
stacles (road borders, in case of generating roads with AmbieGen), it tends to have a ”zig-zag” motion going
from the proximity of a border to the proximity of the other one. Considering this, an immediate adjustment
was to recenter the robot after avoiding an obstacle and reaching the center of the road, so the robot will go
straight until it encounters a new obstacle.

We made this adjustment by introducing a new membrane, called Direction. The membrane has seven
variables, called directionLeft, directionRight, angle, state, distance, angleStep, distanceStep, which will be
detailed when giving the formal definition of the model. In order to obtain the desired behavior, we used
differential drive kinematics equations [20]. The state variable aims to reproduce a finite state machine inside
the production function of the membrane, with the following states:

state 0 - the robot is moving in a straight line

state 1 - the robot is moving in the presence of an obstacle

state 2 - the robot is moving to approximately the center of the lane
state 3 - the robot is recentering on the lane

Before introducing the mathematical definition of the described model, we firstly defined four functions
needed in the production functions:

Radu Traian Bobe, Marian Gheorghe, Florentin Ipate and Ionut Mihai Niculescu

Table 1: Functions used in the model

sgn(z)
1, ifz=1
sgn(x) =<0, ifz=0
-1, ifx=-1
not(z,y)
1, if
not(z,y) = {O7 ;tie;réwgise
gt(zy)
1, ifz>y
gt(@,y) = {O, otherwise
eq(x,y)
1, fze=y
eq(@,y) = 0, otherwise

Also, we used the constant len which represents the axle length of the robot. For E-puck this is equal to

52 mm.

The model is defined as follows:

where:

Iy, = (my H,pw, (Vary, Pry, Var; (0)), ..., (Vary, Pry, Var,(0)))

—m=3k+4{,k=6;
k

- H= {Sadaw7sC}U U{Ci7si,wi};

— = [ll0s: Dwsley - -

oDl Do ulle:

— Vars = {xs,, 25, }, Varg = {24, T4, , Ta, Tst, Tdsts Tas, Tds, Edss Cdws €d }> VaTw = {ZTuys Tw, , €w }, Vars,
Vaf’rc, = {xc,,sz; Tei,s9 Leg,wy s Leg,wy s 602}, 1<:< k7
Vars, = {zs,:}, 1 <i <k,
Vary, = {Zw, ws Twiw,» €w; 35 1 < 0 < k;

k

— Var;(0)=0,i € {s,w,s.} U U{C,’,Si,’wi}, Varded(O) = 100, Varg,(0) = 0,i € Varg \ {eqa};

i=1

— Pro={0" a5 15, = 1zs, + 1|5, };
— Prg = {n0t($st7 3) 7 6q($5t, 3) . ((Idt + ‘$a5|) : Sgn(xas))|eds — 1|'T8t7

not(zs, 3) - Zq4, + eq(st, 3) - ((Ta, + |Tas|) - sgn(_IaS))‘edS — 1 |Isr7

gt(xasa 0) . xa5|eds — 1 |Z’a5,

xdl‘edw - 1|$Szﬂ

Td, |ey, — 11T, ,

€ds * €dw * 0], = 1]eqs + 1]edy,,

not(zq, — g4, 0) - zdg;:dl + eq(zq, — 24, 0) - To + Tg - 0ley, — 1|%a,
zdr4 & + eq(mdr — X4y, 0) . mas'edw — 1 |xas>

not(zq, — 4, 0) - || 214en|J -3+ eq(zg, — 4,, 0) - Tags + Tas + 0e,, — 1]Zds,

eq(xst, 1) - 2 + eq(zst, 2) - not(xgse, 0) - 2 + eq(st, 2) - eq(xast, 0) - 3+

eq(xsh 3) : gt(xdsh 0)) + eq(xsta 3) : GCI(JUdsm 0) : O‘eds — 1 |mst7

Tst * 0+ I‘Edw — 1|$st7

Tast - 0 + 180‘641” — 1|$dst7

eq(xsty 2) : gt(xdsta 0) ’ (Idst - 1) + E(I(Ista 1) : xdst|eds — 1|Idst7

eq(Tst, 3) - gt(2ds, 0) - (xags — 1) + not(xst, 3) - Tas|es — 11%ds;

nOt(:EdT — Zq,, 0) .

= {5},

Test-Driven Simulation of Robots Controlled by Enzymatic Numerical P Systems Models 7

Pry ={zs, - Twle, = 1|24,
f(@w) - ws,]e, — 1|2a,},
Ts, * T e, — 1]Zd,,
f(@w,) - 7s.]e, — 1]Ta,},
(f(zwz) f(wa)) * Tt 100|€w — 1 ‘edw
(not(xy,, 0) - not(xy,, 0)) - xs, - 100], — 1]€dw;
Prs, ={z,, = 1|5, };
Pre, = {ae, s - Te,wle, = 175
Icl,s,» . Ic,,,wr €c; — 1|IST}7 1 S 1 S k7
Pry, = {325, = 1|25, i + 12,5, + 1]Tc; 5.}, 1 <1 <k
Pry, = {waz,wz|ew, = Zw, wy, + 11 2e; s
2L, . = Ew, w, + 1w}, 1 <0< k;

euw,

As observed, the main difference in the membranes structure is made by the new region called direction.
Next we present the meaning of the variables used in it:

x4, and zq4, represent directionLeft and directionRight ;
z, and T4, represent angle and angleStep ;
Zgse and xgs represent distance and distanceStep

Zs represents the state of the simulated finite state machine

O O O O

4.3 Extended Refined Model

Experiments carried out with the second model proved that when the robot approaches perpendicularly the
obstacle, it remains locked into that obstacle. This limitation is caused by the values of weights, which have
values of opposite sign, and sum is cancel each other out. This situation can be easily explained by the
position of the proximity sensors that are facing the obstacle perpendicularly.

To solve this problematic behavior we defined two more production functions inside Weight compartment.
These functions are distributed to directionRight and directionLeft variables, as follows:

directionLeft =eq(|weightLeft|, |weightRight|) - gt(|weightLeft|, 0)-

- gt(|weightRight|, 0) - weightLeft - cruiseSpeed - 0

directionRight =eq(|weightLeft|, |weightRight|) - gt(|weightLeft|, 0)-
- gt(|weightRight|, 0) - weightRight - 0 + cruiseSpeed

In this way, we ensure that the robot will not get stuck when perpendicularly facing an obstacle, as the
speed of the right wheel (guided by directionRight variable) will move the robot to the left.
An interesting step would be to automatically decide what direction to follow in this situation (e.g., if an
obstacle is near on the left, a better decision should be to activate the directionLeft variable, thus moving
the robot to the right).

5 Simulation Results

In this section we will present some scenarios designed to challenge the robot as well as their results. Consider-
ing the way we defined and integrated the models, these simulation scenarios guided us to refine intermediate
variants of models based on the results.

In this experiment we opted for three scenarios and all of them are defined by the type of the area E-puck
needs to go through. These are introduced as follows:

a) corridors
b) a square
c¢) roads generated by AmbieGen

8 Radu Traian Bobe, Marian Gheorghe, Florentin Ipate and Ionut Mihai Niculescu

The first two scenarios were created in a simple manner, using the areas that E-puck should cover being
defined using Webots embedded shapes. The last scenario is the most complex one, taking the roads gener-
ated by AmbieGen and integrating them in a Webots world.

As stated above, our approach combines robot testing and simulation, using AmbieGen for road genera-
tion. The tool offers flexibility in choosing the parameters needed by the genetic algorithm. Some of them are
set as constant values in the source code and other aspects (e.g, allowed out of bound percentage, map size,
generation time) can be set easily from the command line, when launching the tool. Taking into consideration
the default values from AmbieGen, we performed some trials and noticed that the same would fit our needs
in road generation. More details about these values and how to use the tool were presented in [1,4].

As mentioned before, this approach encapsulates three main types of scenarios, a corridor, a square and
roads generated by AmbieGen. For corridor and square we simulated two situations. In the first situation, the
robot starts in a straight line from the middle of the corridor or from the middle of the square. For simplicity,
let us call this types of tests corridor straight and square straight.

The other situation assumes that the robot also starts from the middle of the corridor, respectively square,
but with an angle of 15 degrees. Let us refer to these test types as corridor angle and square angle.

Table 2 contains the simulation results for each model, starting with the basic one, ITy;, . It includes
the test types presented in the above paragraph and four roads generated by AmbieGen and imported to
Webots. We chose these roads from a larger suite, opting for different curvatures in order to better observe
the behavior of each model.

Table 2: Experimental results

Test type HMl HM2 H1u3 HM4

Corridor straight Failed Failed Failed Passed
Corridor angle Failed Passed Failed Passed
Square straight Failed Failed Passed Passed
Square angle Failed Passed Passed Passed
Road 1 Failed Passed Passed Failed
Road 2 Failed Passed Passed Passed
Road 3 Failed Passed Passed Failed
Road 4 Passed Passed Passed Failed

When analyzing the experimental results, we noticed that the basic model, ITy;,, has the worst perfor-
mance compared to the other three models. This basic model passed just one test, Road 4, which is the
simplest one (as presented in Figure 1).

Another observation that can be extracted from the experimental results recorded in Table 2 is that the
second model, ITys,, has an improved performance in terms of passing the road tests. The improvement con-
sists in a rotation that is performed when the road is curved (i.e., the proximity sensors detect an obstacle).
Additional road tests were added to [19].

The refocusing movement added to the behavior of the third model, I, conducted to a natural move-
ment on the roads, all the roads being also passed for this model. Nevertheless, it can be observed that this
modification of the membrane structure (with the addition of the membrane direction) made Iy, to fail the
corridor angle challenge, but pass the square straight, failed by Iz, .. In the end, the last model, ITy,, came
with an improvement in passing the corridor and square tests, due to the property of moving even if the
obstacle is in the front of the robot (placed perpendicularly), the situation when the robot gets stuck in front
of an obstacle being handled. However, the adjustments made came with a few disadvantages in passing road
tests, the robot moving to the left and failing the test at the moment the robot direction is perpendicular to
one of the borders. In many instances, this scenario was frequently observed, serving as the underlying cause
for the model’s failure to pass three out of the four road test examples.

Test-Driven Simulation of Robots Controlled by Enzymatic Numerical P Systems Models 9

Corridor Square

Road 1 Road 2

Road 3 Road 4

Fig. 1: Test cases as represented in Webots

Figure 1 illustrates the experimental tests discussed above. A video representation of each model perfor-
mance on these tests can be found at [21].

6 Conclusions and Future Work

This paper illustrated our approach to model, simulate and test a robot controller based on enzymatic nu-
merical P systems. As we already introduced two models and the working environment in our previous work

10 Radu Traian Bobe, Marian Gheorghe, Florentin Ipate and Ionut Mihai Niculescu

[1], we formally described each additional model and the reasons which made us to implement them.

As presented above, each model was constructed taking into consideration the limitations discovered during
the testing phase of the previous ones. We also emphasize the capabilities of each model in a comparative
manner, testing them in three challenging scenarios with different features.

Concerning our future work, we intend to involve in our experiments other types of P systems in order to
obtain a more natural functioning of the robot. We analyze the possibility to dynamically assign weights values
depending on the situation (e.g., taking a decision when the robot is close to an obstacle and there is another
obstacle nearby). The palette of different P systems types is encouraging but there are some limitations in
the area of available tools for simulating them, this constituting another aspect that we investigate.

References

1. Bobe, R.T., Ipate, F., Niculescu, I.M.: Modelling and search-based testing of robot controllers using enzymatic
numerical p systems. In: Cheval, H., Leustean, L., Sipos, A. (eds.) Proceedings 7th Symposium on Working Formal
Methods, Bucharest, Romania, 21-22 September 2023. Electronic Proceedings in Theoretical Computer Science,
vol. 389, pp. 1-10. Open Publishing Association (2023). https://doi.org/10.4204/EPTCS.389.1

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation 6(2), 182-197 (2002). https://doi.org/10.1109/4235.996017

3. Florea, A.G., Buiu, C.: Modelling multi-robot interactions using a generic controller based on numerical p systems
and ros. In: 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). pp. 1-
6 (2017). https://doi.org/10.1109/ECAIL.2017.8166411

4. Gambi, A., Jahangirova, G., Riccio, V., Zampetti, F.: Sbst tool competition 2022. In: Proceedings of the 15th
Workshop on Search-Based Software Testing. pp. 25-32 (2022). https://doi.org/10.1145/3526072.3527538

5. George, B., Williams, L.: A structured experiment of test-driven development. Information and software Technol-
ogy 46(5), 337-342 (2004). https://doi.org/10.1016/j.infsof.2003.09.011

6. Humeniuk, D., Antoniol, G., Khomh, F.: Ambiegen tool at the sbst 2022 tool competition. In: Proceedings of the
15th Workshop on Search-Based Software Testing. pp. 43-46 (2022). https://doi.org/10.1145/3526072.3527531

7. Humeniuk, D., Khomh, F., Antoniol, G.: Ambiegen: A search-based framework for autonomous systems testing.
arXiv preprint arXiv:2301.01234 (2023). https://doi.org/10.48550/arXiv.2301.01234

8. Khari, M., Kumar, P.: An extensive evaluation of search-based software testing: a review. Soft Computing - A
Fusion of Foundations, Methodologies and Applications 23(6), 1933-1946 (2019). https://doi.org/10.3233 /ICA-
190616

9. Michel, O.: Cyberbotics ltd. webots™: professional mobile robot simulation. International Journal of Advanced
Robotic Systems 1(1), 5 (2004). https://doi.org/10.5772/5618

10. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano,
D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th conference
on autonomous robot systems and competitions. pp. 59-65. IPCB: Instituto Politécnico de Castelo Branco (2009)

11. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical p systems-a new class of membrane computing systems. In:
2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). pp.
1331-1336. IEEE (2010). https://doi.org/10.1109/BICTA.2010.5645071

12. Pérez-Hurtado, 1., Martinez-del Amor, M.A., Zhang, G., Neri, F., Pérez-Jiménez, M.J.: A membrane parallel
rapidly-exploring random tree algorithm for robotic motion planning. Integrated Computer-Aided Engineering
27(2), 121-138 (2020). https://doi.org/10.3233/ICA-190616

13. Piun, G.: Membrane computing: an introduction. Springer Science & Business Media (2002).
https://doi.org/10.1007/978-3-642-56196-2

14. Paun, G., Paun, R.: Membrane computing and economics: Numerical p systems. Fundamenta Informaticae 73(1-
2), 213-227 (2006), http://content.iospress.com/articles/fundamenta-informaticae/fi73-1-2-20

15. Piun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University
Press (2010)

16. Webots reference manual https://cyberbotics.com/doc/reference/proto

17. A. G. Florea and C. Buiu, “PeP - an open-source software simulator of Numerical P systems and Numerical P
systems with Enzymes,” 2017. [Online]. Available: https://github.com/andrei91ro/pep

18. Github project https://github.com/radubobe/Research/tree/main/Modelling}20and%20testing%20roboty
20controllers?20using},20ENPS

19. Github simulation results folder https://github.com/radubobe/Research/tree/main/Modelling%20and%
20testing’20robot%20controllers’,20using’,20ENPS/Simulation’,20results

20. Hellstrom T (2011) Kinematics equations for differential drive and articulated steering. Umea University https:
//www8.cs.umu.se/kurser/5DV122/HT13/material/Hellstrom-ForwardKinematics.pdf

21. Simulation of E-puck controlled by Enzymatic Numerical P Systems models in Webots https://youtu.be/
FA7snrqaKKs

https://doi.org/10.4204/EPTCS.389.1
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/ECAI.2017.8166411
https://doi.org/10.1145/3526072.3527538
https://doi.org/10.1016/j.infsof.2003.09.011
https://doi.org/10.1145/3526072.3527531
https://doi.org/10.48550/arXiv.2301.01234
https://doi.org/10.3233/ICA-190616
https://doi.org/10.3233/ICA-190616
https://doi.org/10.5772/5618
https://doi.org/10.1109/BICTA.2010.5645071
https://doi.org/10.3233/ICA-190616
https://doi.org/10.1007/978-3-642-56196-2
http://content.iospress.com/articles/fundamenta-informaticae/fi73-1-2-20
https://cyberbotics.com/doc/reference/proto
https://github.com/radubobe/Research/tree/main/Modelling%20and%20testing%20robot%20controllers%20using%20ENPS
https://github.com/radubobe/Research/tree/main/Modelling%20and%20testing%20robot%20controllers%20using%20ENPS
https://github.com/radubobe/Research/tree/main/Modelling%20and%20testing%20robot%20controllers%20using%20ENPS/Simulation%20results
https://github.com/radubobe/Research/tree/main/Modelling%20and%20testing%20robot%20controllers%20using%20ENPS/Simulation%20results
https://www8.cs.umu.se/kurser/5DV122/HT13/material/Hellstrom-ForwardKinematics.pdf
https://www8.cs.umu.se/kurser/5DV122/HT13/material/Hellstrom-ForwardKinematics.pdf
https://youtu.be/FA7snrqaKKs
https://youtu.be/FA7snrqaKKs

22.

23.

24.

Test-Driven Simulation of Robots Controlled by Enzymatic Numerical P Systems Models 11

Wang, X., Zhang, G., Neri, F., Jiang, T., Zhao, J., Gheorghe, M., Ipate, F., Lefticaru, R.: Design and imple-
mentation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integrated
Computer-Aided Engineering 23(1), 15-30 (2016). https://doi.org/10.3233 /ICA-150503

Whitley, D., Rana, S., Dzubera, J., Mathias, K.E.: Evaluating evolutionary algorithms. Artificial intelligence
85(1-2), 245-276 (1996). https://doi.org/10.1016,/0004-3702(95)00124-7

Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life applications with membrane computing. Springer (2017).
https://doi.org/10.1007/s00500-017-2906-y

https://doi.org/10.3233/ICA-150503
https://doi.org/10.1016/0004-3702(95)00124-7
https://doi.org/10.1007/s00500-017-2906-y

	Test-Driven Simulation of Robots Controlled by Enzymatic Numerical P Systems Models

